|
 |
 |
 |
 |
 |
Introduction |
 |
 |
 |
Feb 21, 23 |
Introduction to ML |
|
|
 |
 |
 |
 |
 |
 |
Feb 28, Mar 2 |
The geometry of linear maps |
|
|
 |
 |
 |
 |
 |
 |
 |
Unsupervised Learning |
 |
 |
 |
 |
 |
 |
 |
 |
March 7, 9 |
Eigendecomposition, PCA, Intro to 3DMM |
|
|
 |
 |
 |
 |
 |
 |
March 9, 14 |
PCA high dim |
|
|
 |
 |
 |
 |
 |
 |
March 21, 23 |
Kmeans |
|
|
 |
 |
 |
 |
 |
 |
March 30, April 4 |
MLE, GMM |
|
|
 |
 |
 |
 |
 |
 |
April 13, 18 |
GMM, density estimator |
|
|
 |
 |
 |
 |
 |
 |
 |
Supervised Learning, Non-Parametric |
 |
 |
 |
 |
 |
 |
 |
 |
April 18, 20 |
KNN |
|
|
 |
 |
 |
 |
 |
 |
April 20, 27 |
Decision Trees and Random Forest |
|
|
 |
 |
 |
 |
 |
 |
May 2, 4 |
Model Selection and Eval Metrics |
|
|
 |
 |
 |
 |
 |
 |
 |
Supervised Learning, Parametric |
 |
 |
 |
 |
 |
 |
 |
 |
May 9, 11 |
Linear, Polynomial, Ridge Regression |
|
|
 |
 |
 |
 |
 |
 |
May 16, 18 |
Perceptron, Logistic Regression |
|
|
 |
 |
 |
 |
 |
 |
May 23, 25 |
Softmax, MLP |
|
|
 |
 |
 |
 |
 |
 |
May 25 |
Backpropagation |
|
|
 |
 |
 |
 |
 |
 |