Artificial Intelligence and Machine Learning - Unit 2

Logo

AA 2023/2024

AA 2022/2023

AA 2021/2022

Course Material & Lectures

📖 Course Material

It is in the form of Jupyter Notebook slides with math, code, drawings, plots and explanations

Lectures

Opening the Binder link will reproduce the slides live.

Be patient, it takes a while to load Binder. Thanks.

Contributors

Material

Date Topic Slides Github/HTML Code/Notebook  
           
  Introduction        
Feb 24, 25 Introduction to ML Binder GitHub Download  
           
March 3, 4 The geometry of linear maps Binder GitHub Download  
           
  Unsupervised Learning        
March 4, 10 Eigendecomposition, PCA, Intro to 3DMM Binder GitHub Download  
           
March 11,17 3DMM, PCA in High Dimensions, The curse of dimensionality Binder GitHub Download  
           
Mar 18, 24 Clustering, K-means, Visual BoW, Color Compression Binder GitHub Download  
           
March 31 Clustering, Multivariate Gaussian Binder GitHub Download  
           
March 31, April 1 Mixutre of Gaussian, Gaussian Mixture Model Binder GitHub Download  
           
  Non-Parametric, Supervised Learning        
April 7, 8 Supervised Learning, k-NN Binder GitHub Download  
           
April 8, 21 Decision Trees, Random Forest Binder GitHub Download  
           
April 13, 14 Easter break        
           
April 22, 28 Model Selection, Evaluation Metrics Binder GitHub Download  
           
  Parametric, Supervised Learning        
April 29, May 5 Linear Regression, Gradient Descent, Weight Decay, Basis Functions Binder GitHub Download  
           
May 5, 6 Kernel Methods and SVM Binder GitHub Download  
           
May 12, 13 Perceptron, Logistic Regression, SoftMax Binder GitHub Download  
           
May 18 Neural Nets, MLP, Backpropagation Binder GitHub Download  
           
May 26 Backpropagation with vectors and Jacobians Binder GitHub Download Â