|
 |
 |
 |
 |
 |
 |
Introduction |
 |
 |
 |
 |
Feb 24, 25 |
Introduction to ML |
|
|
|
 |
 |
 |
 |
 |
 |
 |
March 3, 4 |
The geometry of linear maps |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Unsupervised Learning |
 |
 |
 |
 |
March 4, 10 |
Eigendecomposition, PCA, Intro to 3DMM |
|
|
|
 |
 |
 |
 |
 |
 |
 |
March 11,17 |
3DMM, PCA in High Dimensions, The curse of dimensionality |
|
|
|
 |
 |
 |
 |
 |
 |
 |
Mar 18, 24 |
Clustering, K-means, Visual BoW, Color Compression |
|
|
|
 |
 |
 |
 |
 |
 |
 |
March 31 |
Clustering, Multivariate Gaussian |
|
|
|
 |
 |
 |
 |
 |
 |
 |
March 31, April 1 |
Mixutre of Gaussian, Gaussian Mixture Model |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Non-Parametric, Supervised Learning |
 |
 |
 |
 |
April 7, 8 |
Supervised Learning, k-NN |
|
|
|
 |
 |
 |
 |
 |
 |
 |
April 8, 21 |
Decision Trees, Random Forest |
|
|
|
 |
 |
 |
 |
 |
 |
 |
April 13, 14 |
Easter break |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
April 22, 28 |
Model Selection, Evaluation Metrics |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Parametric, Supervised Learning |
 |
 |
 |
 |
April 29, May 5 |
Linear Regression, Gradient Descent, Weight Decay, Basis Functions |
|
|
|
 |
 |
 |
 |
 |
 |
 |
May 5, 6 |
Kernel Methods and SVM |
|
|
|
 |
 |
 |
 |
 |
 |
 |
May 12, 13 |
Perceptron, Logistic Regression, SoftMax |
|
|
|
 |
 |
 |
 |
 |
 |
 |
May 18 |
Neural Nets, MLP, Backpropagation |
|
|
|
 |
 |
 |
 |
 |
 |
 |
May 26 |
Backpropagation with vectors and Jacobians |
|
|
|
 |