| Â |
 |
 |
 |
 |
 |
| Â |
Introduction |
 |
 |
 |
 |
| Feb 24, 25 |
Introduction to ML |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| March 3, 4 |
The geometry of linear maps |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| Â |
Unsupervised Learning |
 |
 |
 |
 |
| March 4, 10 |
Eigendecomposition, PCA, Intro to 3DMM |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| March 11,17 |
3DMM, PCA in High Dimensions, The curse of dimensionality |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| Mar 18, 24 |
Clustering, K-means, Visual BoW, Color Compression |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| March 31 |
Clustering, Multivariate Gaussian |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| March 31, April 1 |
Mixutre of Gaussian, Gaussian Mixture Model |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| Â |
Non-Parametric, Supervised Learning |
 |
 |
 |
 |
| April 7, 8 |
Supervised Learning, k-NN |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| April 8, 21 |
Decision Trees, Random Forest |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| April 13, 14 |
Easter break |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| April 22, 28 |
Model Selection, Evaluation Metrics |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| Â |
Parametric, Supervised Learning |
 |
 |
 |
 |
| April 29, May 5 |
Linear Regression, Gradient Descent, Weight Decay, Basis Functions |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| May 5, 6 |
Kernel Methods and SVM |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| May 12, 13 |
Perceptron, Logistic Regression, SoftMax |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| May 18 |
Neural Nets, MLP, Backpropagation |
 |
 |
 |
 |
| Â |
 |
 |
 |
 |
 |
| May 26 |
Backpropagation with vectors and Jacobians |
 |
 |
 |
 |